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A PROBLEM OF APPROACH WITH TWO DIFFERENT PURSUERS AND ONE EVADER* 

A.YU. LEVCBENKOV 

The problem of the simple pursuit of an object in a plane by two other 
objects is considered. It is assumed that the pursuers' maximum 
velocities satisfy different bounds, while the evader moves at most as 
rapidly as the slower pursuer. The duration of the game is fixed. The 
payoff functional is the distance between the evader and the nearest 
pursuer at the end of the game. Without using the explicit form of the 
programmed maximin function, it is proved that the function is u-stable 
throughout the space, i.e., it is identical with the value of the 
differential game. It is also proved that the programmed absorption 
time equals the optimum response time. 

In a previous paper /l/, an optimum solution was found for this 
approach-game problem when the pursuers' velocities are bounded by the 
same quantity. 

This paper continues the investigations of /l-3/. The optimum 
response problem was solved in /4/ for the case of identical pursuers. 
The formalization of differential games employed here is that of /5-71. 

1. Suppose the motions of the fast pursuer s(t),the slow pursuer Q(y) and the evader 

E (2) are described by the equations 

21' = Ul, Yl' = "1, 2,' = wi; i = 1.2 (1.1) 

The pursuers' and evader's control vectors satisfy the bounds 

(u,' + u**)"'<t(, (ur* + v,*)'!* < a. (WI* + WIp)"'< v (1.2) 

the pursuers' superiority being guaranteed by the condition 

V<P<h (1.3) 

The game is considered in the time interval [t,,,6]. The payoff functional is the 
Euclidian distance between the evader and the nearest pursuer at the time the game ends,t = 6, 
i.e., 

The phase space of the system is in fact three-dimensional. For a full description of 
the game position at any given time, it suffices to know the triple of numbers (2, Y, z), where 
z =I) SQII and (5,~) are the Cartesian coordinates of E in a coordinate frame attached to 
the pursuers (Fig.1). The degenerate case s(t,)= Q(t,,) reduces to a game of approach 
between the fast pursuer Q and the evader E, whose value is known (we denote it by p"). In 
the sequel it will be assumed that .S(t,)#Q(t,). 

The dynamics of the phase vector of relative coordinates j = (z~ y,z) are described by 
the following system of differential equations: 

2' = IC, - (ur + uJ12 + y (u* - L(p)/2 (1.5) 
y' = W* - (u* + I?,)/2 - I (VP - u,)lz 

2: = L‘, - 111 

The players' domains of attainability are represented in the game plane by circles G., 
G,. G, of radii R. = r(e - to), & a A(6 - t.).R.= ~(6 - tr), centrad at the points S.G and 
E, respectively. Let m be the locus of all points equidistant from the circles G,and G,. 
Denote the pointsatwhich the circle G, cuts m by A* and A, (Fig.2). In the cases G, f-l m = 

10) or A* = A, it can be shown that the original game degenerates into a two-person game 
with value pl' equal to the programmed maximin y. 

Let A* #A,. If E e iot SA*QA,, the game again reduces to a two-person game (the 

domain in which p"= p" is denoted by Dll). The danain in which E E iot SA’QA, iS 

denoted by D,,. Anticipating, we remark that in the domain D,, the pursuers can increase 
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their chances of success by interacting. 

Fig.1 Fig.2 

Fig.3 

Fig.4 Fig.5 
The programmed maximin function y is defined as follows: 
a) y = 0 if G, IJ GpxG.; 
b) if y* = p(A*,G,) = p (A*,G,) and y+ = p (A,,G,)= p (A,,'G,), then 

Y = max Iv*, ?e) if G=\ (G, U GJz (0) 

(P.(*, -1 is the Euclidian distance from a point to a set in the plane). Note that a system 

of equations can be set up for the functionsy'and ye, solving the triangles SA’Q, SA,Q and 
SEQ, but the cumbersome form ofthe resulting expressions hinders theireffectiveinvestigation. 

It can be seen from the definition that the function y is piecewise-smooth in D,,, it 
may fail to be smooth only on the surface y -= 0 (when y = y* = ye). It will be shown later 
that the prograimned maximin function y is u-stable throughout space and is therefore identical 
with the value of the game /6/. 

2. Let v(to, co) be the programmed maximin at a position {te, Lo) fZ D,, I to fix ideas, 
suppose that E,E AS,A,*Q, (ue>O). Define an extremal motion of players S and Q as a motion 
with maximum velocity at the point A*. Denote the corresponding control constants of the 
players by u" and v". Then there exists a number T such that, for any At< T andanarbitrary 
measurable sample w(t) the control triple (u', VP, w(t))takes the system at time 
to position (t,, ci), 

t, = to + At 
in such a way that, for every TV It,,t,J , E@)E AS(t)A+Q(t). At the 

initial position (at time t = to) we have a covering 

which obviously remains valid at time t = 1, as well (Fig.3) (C denotes the unit circle 
about the origin). This means that y(t,, &)<v(to, &,), which is precisely the condition for 
u-stability. 
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3. We will now investigate the behaviour of the function y on the surface Y = 0. Let us 
assume that either v>O, or y = 0 but A*,A, '= a(G, /J G,). The stability of the function 
y = 0 when A*, A, E int (G, U G,,) is obvious. 

It is convenient to conduct our investigation of y on the surface y = 0 in a special 
coordinate frame (Fig.4). Let a =I1 SE)I, b =IIEQII, c = a j-b. Relative to this frame, the 
value of y is determined from the formula 

y = @,I -t ab (1 - ((R, - R,) lc)'))'" - (R.b + R,a)lc (3.1) 

As system (1.5) is linear in the controls, it will suffice to verify the u-stability of 
y for (I w(t)11 = v. Moreover, stability will be established if, for any choice of the control 
w(t)(II w(t)11 = v) by player E at time t, there exist IS> 0 and controls u (r)* V(T) of 
the pursuers in the interval T E It,t -I- 61 (with I( u/I = p,II uI[ = h) such that the condition 
dyldt < 0 holds along the corresponding trajectory of motion of the system. 

Suppose that player E's position is to the right of the perpendicular A.0 (a>[[ SOlI). 
Introduce angles as new controls (Fig.4): 

ll, = /l cos cp, u1 = --)i cos$, IL., = -v cosx 

uz = p sin cp, V* = h sin $7, w2 = v sin x 

(if a <<I SOlI we replace %I-+ -x). Consider the equations of motion in coordinates(a, b-y): 

a’ = - (p co9 ‘p + v cos x), b’ = - (1, co9 Cp - V COS X) 

y' = v sin x - bp sin cplc - ah sin $1~ 

(3.2) 

Note that the angles corresponding to controls u" and v0 in the new notation areT" and$O. 
Let O<.%.< R (for --n <% < 0 the reasoning is analogous). Divide the remaining 

part of the vectogram of player E into two subsets: 

1) controls x(t) which, together with go and $', generate a motion with y'> 0; these 
controls consitute the set K,; 

2) all other controls - the set KI. 
For controls in the first subset , u-stability of y can be proved by arguments similar to 

those of Sect.2. 
Consider the second subset of controls for player E. In this case, a trajectory 

generated by controls ($,g",%) is cF;aQcterized at time 1 i- 6 (6 >O) by ~‘(0 and the 
point E lies in the lower triangle . We now impose additional constraints on the 
pursuers' controls. Given a position &,O,z), we consider only controls cp (t) and $(t)which, 
together with %(t)E K,, generate trajectories that slide (y' = 0) along the surface y = 0. 
We shall show that among the remaining controls there are some that generate trajectories 
along which y is a non-increasing function. 

Thus, the dynamics of the system are described by the first two equations of (3.2). 
Sliding of the phase trajectory along the surface y = 0 is guaranteed by the final condition 

cv sin x = bp sin q i- ah sin Cp (3.3) 

Let @(%)denotetheset of all pairs of controls (~~9) such that O< cp <TO. O,<lp gcp" 
and the triple (cp,$,%) satisfies condition (3.3). 

The u-stability of y on the surface y - 0 follows from the inequality 

To prove inequality (3.41, differentiate (3.1) along trajectories of system (3.21, 
observing the constraint (3.3). This gives an expression for the derivative of v(r= dy/df(,.,), 

with theangles cp,$, x satisfying (3.3). Evaluate the minimum of this expression as a 
function of (cp.$) E 0, (x): 

min r = min Id, cos x - bpl, cm v - &lq cm $1 

I, = R.cosxO, 1. = CR,+ Y) COScpO, 1, = (Rq + y) coslp' 

For fixed x~ K,, the minimum is reached at controls such that 

1, te V = 1, talC (3.5) 

Hence, in view of (3.31, we see that, in response to a control XE K, of player E, the 
pursuers must point their velocity vectors at a point M on the perpendicular A*0 (Fig.51 
such that the phase trajectory will slide along the plane I/= 0. Denote the length of the 
segment MO by H. 

Obviously, the maximum in (3.4) with respect to x is reached when cosx>O: therefore, 
we can determlne the point N QNOg- t) on the segment A.0 at which player E “aims”. The 
maximum value of L (denoted by L*) achieved at controls XE K,is determined from Eq.(3.3) 
by substituting cp" and (0": 



tc\‘l.*:(/,’ : /,*2j1’ .Y 0;~ >in q” :- oh sin 9’ 

If the parameter L ranges over the interval [ll,L*], then H ranges over the interval [o, If"]. 
where H"= IIOA’(l. 

Consider thederivative dr.'dff. Taking into account that 

sin o = H ([,2 -. f{X)..'J" 5inq -= /I (fp’ 112)“:‘. cl,* x = I, (1,2 + L*)-“s 

we obtain 
dl-/dIf 1 (If - L)(h[1l'(1,* j If?)."' ;- uhlq2($a t II')-',.) 

The sign of the derivative depends on the sign of II-L. The sign changes at points 
where 

rv,, ($1 _. H')-'i. = b@ (I** .,. Hg)-',' . . oAH ($2 $- Ha)-‘:* (3.6) 

If this equality holds, then II-- I. and the target points for all players are the same 
(M = .V). 

We now investigate the number of roots of Eq.(3.6) in the interval IO, IPI. 
Since v ;' 1a.A and p>o, we have 1, > ), (Fig.4). Dividing by H and noting that C- a~ 6. 

we obtain 
0 (i!TI - 1.5) -- 6 (LX, - 1 Tp) ,I (3.i) 

Here T(. T,. I,, are the times of motion of the evader and pursuers up to the points M-S. 
Both expressions in parentheses in (3.7) are positive, since r,<~ and TI <rs for any 
point on A*O. Therefore, Eq.(3.6) has no roots in IO, HOI (except for the trivial root H-II) 
and the function I‘ increases monotonically there (since H>L). reaching a maximum at HT. II'. 
It can be shown that when H= Y" and L= I.* one has a strict inequality P<cr. 

This completes the proof of inequality (3.4), and hence also of the fact that the 
programmed maximin y is u-stable in the domain D,,. 

As it is u-stable, the programmed maximin y is identical with the value p*‘ of the 
differential game (l.l)-(1.4); moreover, in the domain Dll interaction of players S and Q 
is essential in order to attain the optimum result. 

The simple behaviour of the value function of the game in phase space is striking. GnlY 
the section of the plane y = 0 belonging to the domain D,, possesses singular properties 
(the scattering plane). At all other points,the value is smooth. 

4. We now consider problem (l.l)-(1.4) without fixing the final instant of the game, and 
determine the minimum time T at which the attainability domains of players S and Q completely 
cover the attainability domain of E. If this is accomplished by a single player, the game 
degenerates to a two-person game and the programmed absorption time T is the optimum response 
time. 

If the covering essentially involves both domains, G, U G, 2 G,, T is the optimumresponse 
time in this case too. 

Indeed, suppose that at position (lo. La) ED,, (Fig.6) player 

F 

E selects an extremal target /7/ at the point A* throughout the 
A* time interval [ro,T1. We claim that the pursuers S and Q cannot 

El+P&l achieve pointwise capture earlier than at a time t= T. 
Assume the contrary: at some time I = 1, < T one of the 

',. %) 
players (say 9) overtakes player E, moving along the programmed 

' 41tDJ 
trajectory to the point A*. Thanks to his superior velocity (1.3), 

Jlto) player Q may reach A* by the time ;= T. But then 

II'? -‘V(N+IIQ(T) -‘.?V,)il<~(,, - f,)+j.(T- I,) = 
A(T-fO)=R* 

But since t,< T this contradicts the triangle inequality. 

The author is indebted to A.G. Pashkov for his formulation 

Fig.6 
of the problem and for his interest. 
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THE PROBLEM OF THE STABLE SYNTHESIS OF BOUNDED CONTROLS 
FOR A CERTAIN CLASS OF NON-STEADY SYSTEMS* 

G.A. BESSONOV, V.I. KOROBOV and G.M. SKLYAR 

Developing the results of /l-3/ with regard to the synthesis of bounded 
controls, a constructive method is given for constructing the control- 
lability function and using the latter to set up a synthesizing control 
for a certain class of non-steady systems. 

1. In this paper the method of Lyapunov functions is employed to solve the following 
problem of synthesizing bounded controls: given a controlled system 

I' = f (t, z, u), I E R", UEQCH' (1.1) 

it is required to construct a control u = u(t, z) satisfying a given constraint UEQ such 
that the trajectory z(t) of system (l.l), beginning at an arbitrary point z,, at time t,, 
arrives at the final instant of time t, + T (T = T(t,,r,)) at a preassigned point zl. The 
synthesis is said to be stable if r,is a rest point (i.e., t (t, .rl, u,) = 0 for some u1 E Q 
and any t E It,, t, + T)) and for any E> 0 there exists 610. such that 11 z(t) - z,li < e 
if III~ - ql( -c 6 and TV jt,,t, + T). Otherewise, the synthesis is said to be unstable. Note 
that when z1 is not a rest point the synthesis is, as a rule, unstable. 

For example, consider the system ~,'~~,fl,~,'=~,~~~~i. The requirement is that the 
trajectory reach the origin o(+=t,= 0) from an arbitrary point (+.I,). The control solving 
the synthesis problem is: lb(z)= -1 if cp > 0. ~1 (4 = 1 if 'p < 0, where p =-x1 T (z.) -!- i)sign (I, + 
1):2. However, any admissible synthesis in this problem is unstable. Indeed, let z, (lo) > 0. 
Then a necessary condition for reaching the origin is that at some time tl, zI'(L;)<O, i.e., 

=t (4) 6 ---iv whence it follows that any possible synthesis is unstable. 
In this paper attention will be confined to the case of stable synthesis. Throughout 

the sequel it will be assumed, without loss of generality, that z, = 0. The control synthesis 
problem will be solved with the help of the controllability function 8 (t,r) /2/, which plays 
a role in the stable synthesis problem analogous to that of the Lyapunov function in stability 
theory. 

2. Our solution of the synthesis problem is based on the following theorem. 

Theorem 1. Consider the controlled process (1.1). Assume that the vector-function 
f(t,z,u) is jointly continuous in all variables and, in the domain 

(0. 2, 4: 1, < t Q 4, 8 < Pl < II 211 Q pt. u E Q) 
satisfies a Lipschitz condition 

II f @, 2”. u-1 - f 0, t’, 4 II -G L, (Pl, PSI (II 2’ - 2’ II + II U’ - Ii II ) 
Assume that in the closed domain 

G = J x (z: II ~(1 < R} (J = k tll) (2.1) 

where O<R<+co, there exits a function 8 (t. 4 satisfying the following conditions: 
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